template<typename _nodeview_t, typename adjlist_t = py::set<Value_type<_nodeview_t>>, typename adjlist_outer_dict_factory = py::dict<Value_type<_nodeview_t>, adjlist_t>>
xnetwork::Graph class

Base class for undirected graphs.

A Graph stores nodes and edges with optional data, or attributes.

Graphs hold undirected edges. Self loops are allowed but multiple (parallel) edges are not.

Nodes can be arbitrary (hashable) C++ objects with optional key/value attributes. By convention None is not used as a node.

Edges are represented as links between nodes with optional key/value attributes.

Parameters

node_container : input graph (optional, default: None) Data to initialize graph. If None (default) an empty graph is created. The data can be any format that is supported by the to_networkx_graph() function, currently including edge list, dict of dicts, dict of lists, NetworkX graph, NumPy matrix or 2d ndarray, SciPy sparse matrix, or PyGraphviz graph.

See Also

DiGraph MultiGraph MultiDiGraph OrderedGraph

Examples

Create an empty graph structure (a "null graph") with 5 nodes and no edges.

> auto v = std::vector{3, 4, 2, 8};
> auto gra = nx.Graph(v);

> auto va = py::dict{{3, 0.1}, {4, 0.5}, {2, 0.2}};
> auto gra = nx.Graph(va);

> auto r = py::range(100);
> auto gra = nx.Graph(r);

gra can be grown in several ways.

Nodes:**

Add one node at a time:

> gra.add_node(1)

Add the nodes from any container (a list, dict, set or even the lines from a file or the nodes from another graph).

> gra.add_nodes_from([2, 3])
> gra.add_nodes_from(range(100, 110))
> H = nx.path_graph(10)
> gra.add_nodes_from(H)

In addition to strings and integers any hashable C++ object (except None) can represent a node, e.g. a customized node object, or even another Graph.

> gra.add_node(H)

Edges:**

gra can also be grown by adding edges.

Add one edge,

> gra.add_edge(1, 2);

a list of edges,

> gra.add_edges_from([(1, 2), (1, 3)]);

or a collection of edges,

> gra.add_edges_from(H.edges());

If some edges connect nodes not yet in the graph, the nodes are added automatically. There are no errors when adding nodes or edges that already exist.

Attributes:**

Each graph can hold key/value attribute pairs in an associated attribute dictionary (the keys must be hashable). By default these are empty, but can be added or changed using direct manipulation of the attribute dictionaries named graph, node and edge respectively.

> gra.graph["day"] = std::any("Friday");

{'day': 'Friday'}

Subclasses (Advanced):**

The Graph class uses a container-of-container-of-container data structure. The outer dict (node_dict) holds adjacency information keyed by node. The next dict (adjlist_dict) represents the adjacency information and holds edge data keyed by neighbor. The inner dict (edge_attr_dict) represents the edge data and holds edge attribute values keyed by attribute names.

Each of these three dicts can be replaced in a subclass by a user defined dict-like object. In general, the dict-like features should be maintained but extra features can be added. To replace one of the dicts create a new graph class by changing the class(!) variable holding the factory for that dict-like structure. The variable names are node_dict_factory, node_attr_dict_factory, adjlist_inner_dict_factory, adjlist_outer_dict_factory, edge_attr_dict_factory and graph_attr_dict_factory.

node_dict_factory : function, (default: dict) Factory function to be used to create the dict containing node attributes, keyed by node id. It should require no arguments and return a dict-like object

node_attr_dict_factory: function, (default: dict) Factory function to be used to create the node attribute dict which holds attribute values keyed by attribute name. It should require no arguments and return a dict-like object

adjlist_outer_dict_factory : function, (default: dict) Factory function to be used to create the outer-most dict in the data structure that holds adjacency info keyed by node. It should require no arguments and return a dict-like object.

adjlist_inner_dict_factory : function, (default: dict) Factory function to be used to create the adjacency list dict which holds edge data keyed by neighbor. It should require no arguments and return a dict-like object

edge_attr_dict_factory : function, (default: dict) Factory function to be used to create the edge attribute dict which holds attribute values keyed by attribute name. It should require no arguments and return a dict-like object.

graph_attr_dict_factory : function, (default: dict) Factory function to be used to create the graph attribute dict which holds attribute values keyed by attribute name. It should require no arguments and return a dict-like object.

Typically, if your extension doesn't impact the data structure all methods will inherit without issue except: to_directed/to_undirected. By default these methods create a DiGraph/Graph class and you probably want them to create your extension of a DiGraph/Graph. To facilitate this we define two class variables that you can set in your subclass.

to_directed_class : callable, (default: DiGraph or MultiDiGraph) Class to create a new graph structure in the to_directed method. If None, a NetworkX class (DiGraph or MultiDiGraph) is used.

to_undirected_class : callable, (default: Graph or MultiGraph) Class to create a new graph structure in the to_undirected method. If None, a NetworkX class (Graph or MultiGraph) is used.

Examples

Create a low memory graph class that effectively disallows edge attributes by using a single attribute dict for all edges. This reduces the memory used, but you lose edge attributes.

> class ThinGraph(nx.Graph):

... all_edge_dict = {'weight': 1} ... def single_edge_dict(self): ... return self.all_edge_dict ... edge_attr_dict_factory = single_edge_dict > gra = ThinGraph() > gra.add_edge(2, 1) > gra[2][1] {'weight': 1} > gra.add_edge(2, 2) > gra[2][1] is gra[2][2] True

Please see :mod:~networkx.classes.ordered for more examples of creating graph subclasses by overwriting the base class dict with a dictionary-like object.

Public types

using nodeview_t = _nodeview_t
using Node = typename nodeview_t::value_type
using adjlist_inner_dict_factory = adjlist_t
using key_type = typename adjlist_t::key_type
using value_type = typename adjlist_t::value_type
using edge_t = std::pair<Node, Node>
using node_t = Node

Public static functions

static auto end_points(edge_t& e) -> edge_t & -> auto
For compatible with BGL adaptor.
static auto end_points(const edge_t& e) -> const edge_t & -> auto
For compatible with BGL adaptor.

Constructors, destructors, conversion operators

Graph(const nodeview_t& Nodes) explicit
Graph(uint32_t num_nodes) explicit

Public functions

auto adj() const -> auto
auto adj() -> auto
auto _nodes_nbrs() const -> auto
auto begin() const -> auto
auto end() const -> auto
auto contains(const Node& n) -> bool -> auto
auto operator[](const Node& n) const -> const auto & -> auto
auto at(const Node& n) const -> const auto & -> auto
auto operator[](const Node& n) -> auto & -> auto
auto nodes() -> auto
auto number_of_nodes() const -> size_t -> auto
auto order() -> auto
auto size() const -> size_t -> auto
auto has_node(const Node& n) const -> bool -> auto
template<typename U = key_type>
auto add_edge(const Node& u, const Node& v) -> typename std::enable_if< std::is_same< U, value_type >::value >::type -> auto
template<typename U = key_type>
auto add_edge(const Node& u, const Node& v) -> typename std::enable_if<!std::is_same< U, value_type >::value >::type -> auto
template<typename T>
auto add_edge(const Node& u, const Node& v, const T& data) -> auto
template<typename C1>
auto add_edges_from(const C1& edges) -> auto
template<typename C1, typename C2>
auto add_edges_from(const C1& edges, const C2& data) -> auto
auto has_edge(const Node& u, const Node& v) -> bool -> auto
auto degree(const Node& n) const -> auto
auto clear() -> auto
auto is_multigraph() -> auto
auto is_directed() -> auto

Public variables

size_t _num_of_edges
nodeview_t _node
adjlist_outer_dict_factory _adj

Function documentation

template<typename _nodeview_t, typename adjlist_t, typename adjlist_outer_dict_factory>
static auto xnetwork::Graph<_nodeview_t, adjlist_t, adjlist_outer_dict_factory>::end_points(edge_t& e) -> edge_t &

For compatible with BGL adaptor.

Parameters
in
Returns edge_t&

template<typename _nodeview_t, typename adjlist_t, typename adjlist_outer_dict_factory>
static auto xnetwork::Graph<_nodeview_t, adjlist_t, adjlist_outer_dict_factory>::end_points(const edge_t& e) -> const edge_t &

For compatible with BGL adaptor.

Parameters
in
Returns edge_t&

template<typename _nodeview_t, typename adjlist_t, typename adjlist_outer_dict_factory>
xnetwork::Graph<_nodeview_t, adjlist_t, adjlist_outer_dict_factory>::Graph(const nodeview_t& Nodes) explicit

Initialize a graph with edges, name, or graph attributes.

Parameters

node_container : input nodes

Examples

> v = std::vector{5, 3, 2}; > gra = nx.Graph(v); // or DiGraph, MultiGraph, MultiDiGraph, etc

> r = py::range(100); > gra = nx.Graph(r); // or DiGraph, MultiGraph, MultiDiGraph, etc

template<typename _nodeview_t, typename adjlist_t, typename adjlist_outer_dict_factory>
auto xnetwork::Graph<_nodeview_t, adjlist_t, adjlist_outer_dict_factory>::adj() const

Graph adjacency object holding the neighbors of each node.

This object is a read-only dict-like structure with node keys and neighbor-dict values. The neighbor-dict is keyed by neighbor to the edge-data-dict. So ‘gra.adj[3][2]['color’] = 'blue'sets the color of the edge(3, 2)to"blue"`.

Iterating over gra.adj behaves like a dict. Useful idioms include for nbr, datadict in gra.adj[n].items():.

The neighbor information is also provided by subscripting the graph. So ‘for nbr, foovalue in gra[node].data('foo’, default=1):` works.

For directed graphs, gra.adj holds outgoing (successor) info.

template<typename _nodeview_t, typename adjlist_t, typename adjlist_outer_dict_factory>
auto xnetwork::Graph<_nodeview_t, adjlist_t, adjlist_outer_dict_factory>::begin() const

String identifier of the graph.

This graph attribute appears : the attribute dict gra.graph keyed by the string "name". as well as an attribute (technically a property) gra.name. This is entirely user controlled. Iterate over the nodes. Use: "for (const auto& n : gra)".

Returns

niter : iterator An iterator over all nodes : the graph.

Examples

> gra = nx.path_graph(4); // or DiGraph, MultiGraph, MultiDiGraph, etc > [n for n : gra]; [0, 1, 2, 3]; > list(gra); [0, 1, 2, 3];

template<typename _nodeview_t, typename adjlist_t, typename adjlist_outer_dict_factory>
auto xnetwork::Graph<_nodeview_t, adjlist_t, adjlist_outer_dict_factory>::contains(const Node& n) -> bool

Return true if (n is a node, false otherwise. Use: "n : gra".

Examples

> gra = nx.path_graph(4); // or DiGraph, MultiGraph, MultiDiGraph, etc > 1 : gra true

template<typename _nodeview_t, typename adjlist_t, typename adjlist_outer_dict_factory>
auto xnetwork::Graph<_nodeview_t, adjlist_t, adjlist_outer_dict_factory>::operator[](const Node& n) const -> const auto &

Return a dict of neighbors of node n. Use: "gra[n]".

Parameters

n : node A node in the graph.

Returns

adj_dict : dictionary The adjacency dictionary for nodes connected to n.

Notes

gra[n] is the same as gra.adj[n] and similar to gra.neighbors(n); (which is an iterator over gra.adj[n]);

Examples

> gra = nx.path_graph(4); // or DiGraph, MultiGraph, MultiDiGraph, etc > gra[0]; AtlasView({1: {}});

template<typename _nodeview_t, typename adjlist_t, typename adjlist_outer_dict_factory>
auto xnetwork::Graph<_nodeview_t, adjlist_t, adjlist_outer_dict_factory>::nodes()

A NodeView of the Graph as gra.nodes().

Returns

NodeView Allows set-like operations over the nodes as well as node attribute dict lookup and calling to get a NodeDataView. A NodeDataView iterates over (n, data) and has no set operations. A NodeView iterates over n and includes set operations.

When called, if (data == false, an iterator over nodes. Otherwise an iterator of 2-tuples (node, attribute value); where the attribute is specified : data. If data is true then the attribute becomes the entire data dictionary.

Notes

If your node data is not needed, it is simpler and equivalent to use the expression for n : gra, or list(gra).

Examples

There are two simple ways of getting a list of all nodes : the graph) {

> gra = nx.path_graph(3);
> list(gra.nodes);

[0, 1, 2]; > list(gra); [0, 1, 2];

To get the node data along with the nodes) {

> gra.add_node(1, time="5pm");
> gra.nodes[0]["foo"] = "bar";
> list(gra.nodes(data=true));

[(0, {"foo": "bar"}), (1, {"time": "5pm"}), (2, {})]; > list(gra.nodes.data()); [(0, {"foo": "bar"}), (1, {"time": "5pm"}), (2, {})];

> list(gra.nodes(data="foo"));

[(0, "bar"), (1, None), (2, None)]; > list(gra.nodes.data("foo")); [(0, "bar"), (1, None), (2, None)];

> list(gra.nodes(data="time"));

[(0, None), (1, "5pm"), (2, None)]; > list(gra.nodes.data("time")); [(0, None), (1, "5pm"), (2, None)];

> list(gra.nodes(data="time", default="Not Available"));

[(0, "Not Available"), (1, "5pm"), (2, "Not Available")]; > list(gra.nodes.data("time", default="Not Available")); [(0, "Not Available"), (1, "5pm"), (2, "Not Available")];

If some of your nodes have an attribute and the rest are assumed to have a default attribute value you can create a dictionary from node/attribute pairs using the default keyword argument to guarantee the value is never None:) {

    > gra = nx.Graph();
    > gra.add_node(0);
    > gra.add_node(1, weight=2);
    > gra.add_node(2, weight=3);
    > dict(gra.nodes(data="weight", default=1));
{0: 1, 1: 2, 2: 3}

template<typename _nodeview_t, typename adjlist_t, typename adjlist_outer_dict_factory>
auto xnetwork::Graph<_nodeview_t, adjlist_t, adjlist_outer_dict_factory>::number_of_nodes() const -> size_t

Return the number of nodes : the graph.

Returns

nnodes : int The number of nodes : the graph.

See Also

order, size which are identical

Examples

> gra = nx.path_graph(3); // or DiGraph, MultiGraph, MultiDiGraph, etc > len(gra); 3

template<typename _nodeview_t, typename adjlist_t, typename adjlist_outer_dict_factory>
auto xnetwork::Graph<_nodeview_t, adjlist_t, adjlist_outer_dict_factory>::order()

Return the number of nodes : the graph.

Returns

nnodes : int The number of nodes : the graph.

See Also

number_of_nodes, size which are identical

template<typename _nodeview_t, typename adjlist_t, typename adjlist_outer_dict_factory>
auto xnetwork::Graph<_nodeview_t, adjlist_t, adjlist_outer_dict_factory>::size() const -> size_t

Return the number of nodes : the graph.

Returns

nnodes : int The number of nodes : the graph.

See Also

number_of_nodes, order which are identical

template<typename _nodeview_t, typename adjlist_t, typename adjlist_outer_dict_factory>
auto xnetwork::Graph<_nodeview_t, adjlist_t, adjlist_outer_dict_factory>::has_node(const Node& n) const -> bool

Return true if (the graph contains the node n.

Identical to n : gra

Parameters

n : node

Examples

> gra = nx.path_graph(3); // or DiGraph, MultiGraph, MultiDiGraph, etc > gra.has_node(0); true

template<typename _nodeview_t, typename adjlist_t, typename adjlist_outer_dict_factory> template<typename U = key_type>
auto xnetwork::Graph<_nodeview_t, adjlist_t, adjlist_outer_dict_factory>::add_edge(const Node& u, const Node& v) -> typename std::enable_if< std::is_same< U, value_type >::value >::type

Add an edge between u and v.

The nodes u and v will be automatically added if (they are not already : the graph.

Edge attributes can be specified with keywords or by directly accessing the edge"s attribute dictionary. See examples below.

Parameters

u, v : nodes Nodes can be, for example, strings or numbers. Nodes must be hashable (and not None) C++ objects.

See Also

add_edges_from : add a collection of edges

Notes

Adding an edge that already exists updates the edge data.

Many XNetwork algorithms designed for weighted graphs use an edge attribute (by default weight) to hold a numerical value.

Examples

The following all add the edge e=(1, 2) to graph gra) {

> gra = nx.Graph()   // or DiGraph, MultiGraph, MultiDiGraph, etc
> e = (1, 2);
> gra.add_edge(1, 2)           // explicit two-node form
> gra.add_edges_from([(1, 2)]);  // add edges from iterable

container

Associate data to edges using keywords) {

> gra.add_edge(1, 2);

For non-string attribute keys, use subscript notation.

> gra.add_edge(1, 2);
> gra[1][2].update({0: 5});
> gra.edges()[1, 2].update({0: 5});

template<typename _nodeview_t, typename adjlist_t, typename adjlist_outer_dict_factory>
auto xnetwork::Graph<_nodeview_t, adjlist_t, adjlist_outer_dict_factory>::has_edge(const Node& u, const Node& v) -> bool

Return true if (the edge (u, v) is : the graph.

This is the same as v : gra[u] without KeyError exceptions.

Parameters

u, v : nodes Nodes can be, for example, strings or numbers. Nodes must be hashable (and not None) C++ objects.

Returns

edge_ind : bool true if (edge is : the graph, false otherwise.

Examples

> gra = nx.path_graph(4); // or DiGraph, MultiGraph, MultiDiGraph, etc > gra.has_edge(0, 1); // using two nodes true > e = (0, 1); > gra.has_edge(*e); // e is a 2-tuple (u, v); true > e = (0, 1, {"weight":7}); > gra.has_edge(*e[:2]); // e is a 3-tuple (u, v, data_dictionary); true

The following syntax are equivalent) {

> gra.has_edge(0, 1);

true > 1 : gra[0]; // though this gives KeyError if (0 not : gra true

template<typename _nodeview_t, typename adjlist_t, typename adjlist_outer_dict_factory>
auto xnetwork::Graph<_nodeview_t, adjlist_t, adjlist_outer_dict_factory>::clear()

An EdgeView of the Graph as gra.edges().

edges( nbunch=None, data=false, default=None);

The EdgeView provides set-like operations on the edge-tuples as well as edge attribute lookup. When called, it also provides an EdgeDataView object which allows control of access to edge attributes (but does not provide set-like operations). Hence, gra.edges[u, v]["color"] provides the value of the color attribute for edge (u, v) while for (auto [u, v, c] : gra.edges.data("color", default="red") { iterates through all the edges yielding the color attribute with default "red" if (no color attribute exists.

Parameters

nbunch : single node, container, or all nodes (default= all nodes); The view will only report edges incident to these nodes. data : string or bool, optional (default=false); The edge attribute returned : 3-tuple (u, v, ddict[data]). If true, return edge attribute dict : 3-tuple (u, v, ddict). If false, return 2-tuple (u, v). default : value, optional (default=None); Value used for edges that don"t have the requested attribute. Only relevant if (data is not true or false.

Returns

edges : EdgeView A view of edge attributes, usually it iterates over (u, v); or (u, v, d) tuples of edges, but can also be used for attribute lookup as edges[u, v]["foo"].

Notes

Nodes : nbunch that are not : the graph will be (quietly) ignored. For directed graphs this returns the out-edges.

Examples

> gra = nx.path_graph(3) // or MultiGraph, etc > gra.add_edge(2, 3, weight=5); > [e for e : gra.edges]; [(0, 1), (1, 2), (2, 3)]; > gra.edges.data(); // default data is {} (empty dict); EdgeDataView([(0, 1, {}), (1, 2, {}), (2, 3, {"weight": 5})]); > gra.edges.data("weight", default=1); EdgeDataView([(0, 1, 1), (1, 2, 1), (2, 3, 5)]); > gra.edges([0, 3]); // only edges incident to these nodes EdgeDataView([(0, 1), (3, 2)]); > gra.edges(0); // only edges incident to a single node (use gra.adj[0]?); EdgeDataView([(0, 1)]); An OutEdgeView of the DiGraph as gra.edges().

edges(self, nbunch=None, data=False, default=None)

The OutEdgeView provides set-like operations on the edge-tuples as well as edge attribute lookup. When called, it also provides an EdgeDataView object which allows control of access to edge attributes (but does not provide set-like operations). Hence, ‘gra.edges()[u, v]['color’]provides the value of the color attribute for edge(u, v)whilefor (u, v, c) in gra.edges().data('color', default='red'):` iterates through all the edges yielding the color attribute with default ‘'red’` if no color attribute exists.

Parameters

nbunch : single node, container, or all nodes (default= all nodes) The view will only report edges incident to these nodes. data : string or bool, optional (default=False) The edge attribute returned in 3-tuple (u, v, ddict[data]). If True, return edge attribute dict in 3-tuple (u, v, ddict). If False, return 2-tuple (u, v). default : value, optional (default=None) Value used for edges that don't have the requested attribute. Only relevant if data is not True or False.

Returns

edges : OutEdgeView A view of edge attributes, usually it iterates over (u, v) or (u, v, d) tuples of edges, but can also be used for attribute lookup as ‘edges[u, v]['foo’]`.

See Also

in_edges, out_edges

Notes

Nodes in nbunch that are not in the graph will be (quietly) ignored. For directed graphs this returns the out-edges.

Examples

> gra = nx.DiGraph() # or MultiDiGraph, etc > nx.add_path(gra, [0, 1, 2]) > gra.add_edge(2, 3, weight=5) > [e for e in gra.edges()] [(0, 1), (1, 2), (2, 3)] > gra.edges().data() # default data is {} (empty dict) OutEdgeDataView([(0, 1, {}), (1, 2, {}), (2, 3, {'weight': 5})]) > gra.edges().data('weight', default=1) OutEdgeDataView([(0, 1, 1), (1, 2, 1), (2, 3, 5)]) > gra.edges()([0, 2]) # only edges incident to these nodes OutEdgeDataView([(0, 1), (2, 3)]) > gra.edges()(0) # only edges incident to a single node (use gra.adj[0]?) OutEdgeDataView([(0, 1)]) Remove all nodes and edges from the graph.

This also removes the name, and all graph, node, and edge attributes.

Examples

> gra = nx.path_graph(4); // or DiGraph, MultiGraph, MultiDiGraph, etc > gra.clear(); > list(gra.nodes); []; > list(gra.edges()); [];

template<typename _nodeview_t, typename adjlist_t, typename adjlist_outer_dict_factory>
auto xnetwork::Graph<_nodeview_t, adjlist_t, adjlist_outer_dict_factory>::is_multigraph()

Return true if (graph is a multigraph, false otherwise.

template<typename _nodeview_t, typename adjlist_t, typename adjlist_outer_dict_factory>
auto xnetwork::Graph<_nodeview_t, adjlist_t, adjlist_outer_dict_factory>::is_directed()

Return true if (graph is directed, false otherwise.